博客
关于我
Apache IoTDB源码解析(0.11.2版本):基本的数据结构解析(iotdb的内存表、存放的值)
阅读量:346 次
发布时间:2019-03-04

本文共 628 字,大约阅读时间需要 2 分钟。

IoTDB内存表模型与源码分析

1. 声明

本文旨在分享学习IoTDB源码的经历和收获,重点探讨其内存表的数据结构设计。所有内容源自于GitHub直接拉取的IoTDB开源项目源码。

2. AbstractMemTable源码分析

IoTDB采用HashMap作为内存表的基础数据结构,key为devcId(表示某个时序的前缀),value为另一个Map,用于存储时序后缀、时间戳集合以及数值集合。这种设计使得数据能够按照特定规则组织和检索。

3. IWritableMemChunk及子类源码解读

IWritableMemChunk类是IoTDB内存写入功能的核心实现,包含两个主要属性:MeasurementSchema(用于存储测点定义)和TVList(用于存储时序数据)。该类提供两种写入方式:单个数据写入和数组批量写入,分别通过相应的方法实现。

4. TVList及其子类分析

TVList位于org.apache.iotdb.db.utils.datastructure包下,作为时间序列数据的基础存储和排序接口。其子类BinaryTVList通过特定算法实现数据存储和索引计算,确保高效的时序数据管理和快速访问。

5. 内存表设计总结

IoTDB采用 HashMap管理内存表,devcId作为键,存储时序后缀及相关数据的Map作为值。TVList及其子类负责时序数据的存储和排序,通过两份数组分别管理时序和数值索引,确保数据的高效性和完整性。

转载地址:http://zcrh.baihongyu.com/

你可能感兴趣的文章
Numpy.ndarray对象不可调用
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>
numpy判断对应位置是否相等,all、any的使用
查看>>
Numpy如何使用np.umprod重写range函数中i的python
查看>>
numpy数组替换其中的值(如1替换为255)
查看>>
numpy数组索引-ChatGPT4o作答
查看>>
Numpy矩阵与通用函数
查看>>
numpy绘制热力图
查看>>
numpy转PIL 报错TypeError: Cannot handle this data type
查看>>
Nutch + solr 这个配合不错哦
查看>>
NutzCodeInsight 2.0.7 发布,为 nutz-sqltpl 提供友好的 ide 支持
查看>>
NutzWk 5.1.5 发布,Java 微服务分布式开发框架
查看>>
NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
查看>>
NuxtJS 接口转发详解:Nitro 的用法与注意事项
查看>>
NVelocity标签使用详解
查看>>
Nvidia Cudatoolkit 与 Conda Cudatoolkit
查看>>
NVIDIA GPU 的状态信息输出,由 `nvidia-smi` 命令生成
查看>>
NVIDIA-cuda-cudnn下载地址
查看>>